Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 228: 112938, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34741930

RESUMO

Inhaling silica dust in the environment can cause progressive pulmonary fibrosis, then silicosis. Silicosis is the most harmful occupational disease in the world, so the study of the mechanism is of great significance for the prevention and treatment of silicosis. Long non-coding RNAs (lncRNAs) are important players in the pathological process of fibrotic diseases. However, the function of specific lncRNA in regulating pulmonary fibrosis remains elusive. In this study, a mouse model of pulmonary fibrosis via intratracheal instillation of silica particles was established, and the differential expression of lnc-SNHG1 and miR-326 in lung tissues and TGF-ß1-treated fibroblasts was detected by the qRT-PCR method. Short interfering RNA (siRNA) and plasmid were designed for knockdown or overexpression of lnc-SNHG1 in fibroblasts. MiRNA simulant was designed for overexpression of miR-326 in vivo and in vitro. Dual-luciferase reporter system, immunofluorescence, western blot, wound healing and transwell assay were performed to investigate the function and the underlying mechanisms of lnc-SNHG1. As a result, we found that lnc-SNHG1 was highly expressed in fibrotic lung tissues of mice and TGF-ß1-treated fibroblasts. Moreover, the high expression of lnc-SNHG1 facilitated the migration and invasion of fibroblasts and the secretion of fibrotic molecules, while the low expression of lnc-SNHG1 exerted the opposite effects. Further mechanism studies showed that miR-326 was the potential target of lnc-SNHG1, and there is a negative correlation between the expression levels of lnc-SNHG1 and miR-326. Combined with mitigating fibrotic effects of miR-326 in a mouse model of silica particles exposure, we revealed that lnc-SNHG1 significantly sponged miR-326 and facilitated the expression of SP1, thus accelerating fibroblast-to-myofibroblast transition and synergistically promoting the development of pulmonary fibrosis. Our study uncovered a key mechanism by which lnc-SNHG1 regulated pulmonary fibrosis through miR-326/SP1 axis, and lnc-SNHG1 is a potential target for the prevention and treatment of silicosis.

2.
Toxicology ; 461: 152925, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34481903

RESUMO

Silica dust is a common pollutant in the occupational environment, such as coal mines. Inhalation of silica dust can cause progressive pulmonary fibrosis and then silicosis. Silicosis is still one of the most harmful occupational diseases in the world, so the study of its pathogenesis is necessary for the treatment of silicosis. In this study, we constructed a mouse model of pulmonary fibrosis via intratracheal instillation of silica particles and identified the decreased expression of miR-138 in fibrotic lung tissues of mice. Moreover, the overexpression of miR-138 retarded the process of epithelial-mesenchymal transition (EMT) in a mouse model of silica particles exposure and epithelial cells stimulated by silica particles. Further studies showed that ZEB2 was one of the potential targets of miR-138, and the up-regulation of miR-138 reduced ZEB2 levels in mouse lung tissues and in epithelial cells. We next found that the expression levels of ɑ-SMA and Vimentin were significantly increased and E-cadherin levels were decreased after transfection with miR-138 inhibitor in epithelial cells. However, these effects were abated by the knockdown of ZEB2. Consistently, the increased migration ability of epithelial cells by miR-138 inhibitor transfection was also reversed by the knockdown of ZEB2. Collectively, we revealed that miR-138 significantly targeted ZEB2, thus inhibited the EMT process and mitigated the development of pulmonary fibrosis. miR-138 may be a potential target for the treatment of pulmonary fibrosis.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , MicroRNAs/genética , Fibrose Pulmonar/induzido quimicamente , Dióxido de Silício/toxicidade , Células A549 , Animais , Movimento Celular/genética , Modelos Animais de Doenças , Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/toxicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibrose/patologia , Técnicas de Silenciamento de Genes , Humanos , Exposição por Inalação/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/genética , Fibrose Pulmonar/fisiopatologia , Dióxido de Silício/administração & dosagem , Silicose/fisiopatologia , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo
3.
J Cell Mol Med ; 24(24): 14339-14348, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33135394

RESUMO

Inhalation and deposition of crystalline silica particles in the lung can cause pulmonary fibrosis, then leading to silicosis. Given the paucity of effective drugs for silicosis, new insights for understanding the mechanisms of silicosis, including lung fibroblast activation and myofibroblast differentiation, are essential to explore therapeutic strategies. Our previous research showed that the up-regulation of miR-503 alleviated silica-induced pulmonary fibrosis in mice. In this study, we investigated whether miR-503 can regulate the TGF-ß1-induced effects in lung fibroblasts. Mimic-based strategies aiming at up-regulating miR-503 were used to discuss the function of miR-503 in vivo and in vitro. We found that the expression level of miR-503 was decreased in fibroblasts stimulated by TGF-ß1, and the up-regulation of miR-503 reduced the release of fibrotic factors and inhibited the migration and invasion abilities of fibroblasts. Combined with the up-regulation of miR-503 in a mouse model of silica-induced pulmonary fibrosis, we revealed that miR-503 mitigated the TGF-ß1-induced effects in fibroblasts by regulating VEGFA and FGFR1 and then affecting the MAPK/ERK signalling pathway. In conclusion, miR-503 exerted protective roles in silica-induced pulmonary fibrosis and may represent a novel and potent candidate for therapeutic strategies in silicosis.


Assuntos
Diferenciação Celular/genética , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Camundongos , Modelos Biológicos , Fibrose Pulmonar/patologia , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...